jueves, 21 de abril de 2011

5.22 Importancia técnologica de las ondas electromagneticas.

El uso de tecnología de comunicación inalámbrica está aumentando rápidamente. En particular, los teléfonos celulares y sus torres de la transmisión asociadas están extendiéndose. Los teléfonos celulares permiten la mejorar la comunicación y están convirtiéndose en una parte íntegra de cómo vivimos y trabajamos. Pueden reforzar la productividad de trabajo, pueden mejorar las capacidades de servicio, y pueden aumentar la seguridad personal o familiar. Sin embargo, existe una preocupación asociada acerca de los efectos potenciales sobre la salud debidos a esta tecnología, en particular por las emisiones de ondas de radio.
El uso de dispositivos de la telecomunicación inalámbricos (el ej., radio, televisión, y los teléfonos inalámbricos) ha producido campos de frecuencia de la radio (RF) ubicuos en el ambiente.
El público está expuesto a campos de frecuencia de radio de una multitud de fuentes además de los servicios del teléfono celulares: transmisiones por radio, televisión, los de radio - taxis, servicios de llamada, comunicaciones de la emergencia (por ej., policía, ambulancia, radar), lo que produce un densidad de ondas electromagnéticas en el medio ambiente, lo cual es altamente riesgoso, por ende la instalación de antenas de transmisión de teléfono en las ciudades merece consideración especial.

ONDAS ELECTROMAGNÉTICAS
El descubrimiento de las ondas electromagnéticas fue uno de los avances más importantes del siglo XIX. Cuando Maxwell postuló la existencia de estas ondas consiguió aclarar el problema de la naturaleza de la luz, y además unir la electricidad, el magnetismo y la óptica en una misma rama. Sin embargo no pudo demostrar su existencia, fue Hertz 20 años después, en 1887, el primero en producir ondas electromagnéticas y con ello confirmar las leyes de Maxwell.
Las ondas electromagnéticas están constituidas por dos campos, uno eléctrico y otro magnético, mutuamente sostenidos que se propagan en el espacio en forma ondulatoria. Estas ondas, portadoras de energía, se caracterizan por los parámetros: amplitud y frecuencia, que las determinan totalmente. Pero, además de sus propiedades ondulatorias, también presentan aspectos corpusculares (fotones) comportándose entonces, como paquetes de energía, la cual depende exclusivamente de la frecuencia. Esta visión de la onda como partícula es de gran utilidad para las consideraciones bioquímicas. Las ondas, además de energía, pueden portar información si se modula su amplitud, frecuencia o ambas; y por ello se utilizan en los sistemas de telecomunicación.
Las ondas con energía suficiente para romper las uniones químicas son llamadas radiaciones ionizantes. Éstas incluyen Rayos X y otras ondas de frecuencia más altas. El resto de las ondas son las no-ionizantes.
Las cargas eléctricas al ser aceleradas originan ondas electromagnéticas. Un campo eléctrico variable engendra un campo magnético variable y este a su vez uno eléctrico, de esta forma las o .e. m. se propagan en el vacio sin soporte material.
Dentro de este tipo de ondas dependiendo de su longitud de onda y frecuencia, se clasifican en distintos tipos (ver “Espectro Electromagnético”), hoy en día las ondas de radio y televisión, las microondas, los Rayos X..., son algo cotidiano.
Los efectos de las radiaciones gamma, rayos x, rayos UVA, son conocidos, pero los de las ondas de radio y televisión no . Algunos estudios indican que estas ondas pueden ser una seria amenaza para la salud, pudiendo provocar efectos adversos sobre el hombre tal y como el desarrollo de tumores, debilitación del sistema inmunológico, hiperactividad, etc. Sin embargo no hay un consenso científico ni explicación clara sobre los efectos de estas ondas sobre las personas.




Eq. Tema Descripción de las Fuentes:


E1 La luz La luz presenta una naturaleza compleja: depende de cómo la observemos se manifestará como una onda o como una partícula. Estos dos estados no se excluyen, sino que son complementarios (véase Dualidad onda corpúsculo). Sin embargo, para obtener un estudio claro y conciso de su naturaleza, podemos clasificar los distintos fenómenos en los que participa según su interpretación teórica

Teoría ondulatoria Esta teoría considera que la luz es una onda electromagnética, consistente en un campo eléctrico que varía en el tiempo generando a su vez un campo magnético y viceversa, ya que los campos eléctricos variables generan campos magnéticos (ley de Ampere) y los campos magnéticos variables generan campos eléctricos (ley de Faraday). De esta forma, la onda se auto propaga indefinidamente a través del espacio, con campos magnéticos y eléctricos generándose continuamente. Estas ondas electromagnéticas son sinusoidales, con los campos eléctrico y magnético perpendiculares entre sí y respecto a la dirección de propagación <!--[if !vml]--><!--[endif]-->.





E2 Infrarrojos La fuente primaria de la radiación infrarroja es el calor o radiación térmica. Cualquier objeto que tenga una temperatura mayor a cero absoluto, irradia ondas en la banda infrarroja.

E3 Ondas de radio Un generador de onda es todo aquel circuito que genera la onda que un equipo necesita. Básicamente se denominan osciladores, para generar la frecuencia deseada, y conformadores, para generar la 'forma de onda' requerida.



Las ondas de radio físicamente están constituidas por dos campos, un campo eléctrico y otro magnético y ambos están desfasados 90°. Para entender mejor esta idea podemos imaginar una antena vertical conectada al borne positivo de una pila y el borne negativo a tierra. Luego entre la antena y la tierra aparecerá un campo eléctrico fijo que tendrá la dirección en forma de campana alrededor de la antena y el sentido a tierra.



Si en vez de colocar una pila que es de tensión continua, colocamos un generador de tensión alterna, aparecerá un campo eléctrico alterno que variará al unísono con el voltaje del generador (la antena tiene potencial positivo y tierra negativo y en luego ha cambiado la polaridad del generador y la antena tiene potencial negativo y tierra positivo).



Por lo tanto si por ejemplo en el generador varía el voltaje 50 veces cada segundo, también variará el campo eléctrico 50 veces cada segundo, por lo tanto el campo eléctrico que se crea en torno a la antena tendrá una frecuencia de 50 Hertzios.

E4 Ultravioleta Producción de rayos infrarrojos. Generalmente se utilizan lámparas de filamento de wolframio, al que se le suministra una potencia eléctrica tal que permita alcanzar la temperatura conveniente, para que la radiación emitida tenga una longitud de onda de alrededor de los 12.000 A. La temperatura es de aproximadamente 2.500° K, y la potencia que se consume de alrededor de los 350 vatios. Generalmente van provistas de un reflector apropiado para distribuir adecuadamente la radiación. Cuando se precisan potencias superiores se utilizan los emisores de cuarzo, así llamados porque el filamento metálico va embutido en un tubo de cuarzo refractario. Algunas veces conviene no utilizar temperaturas tan elevadas, para lo que se recurre a refractarios que consiguen r. i. con temperaturas que no superan los 1.000º C.

E5 Rayos X La producción de rayos X se da en un tubo de rayos X que puede variar dependiendo de la fuente de electrones y puede ser de dos clases: tubos con filamento o tubos con gas.

El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento caliente de tungsteno y el ánodo es un bloque de cobre en el cual esta inmerso el blanco. El ánodo es refrigerado continuamente mediante la circulación de agua, pues la energía de los electrones al ser golpeados con el blanco, es transformada en energía térmica en un gran porcentaje. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y producto de la colisión los rayos X son generados. Finalmente el tubo de rayos X posee una ventana la cual es transparente a este tipo de radiación elaborada en berilio, aluminio o mica.

El tubo con gas se encuentra a una presión de aproximadamente 0.01 mmHg y es controlada mediante una válvula; posee un cátodo de aluminio cóncavo, el cual permite enfocar los electrones y un ánodo. Las partículas ionizadas de nitrógeno y oxígeno, presentes en el tubo, son atraídas hacia el cátodo y ánodo. Los iones positivos son atraídos hacia el cátodo e inyectan electrones a este. Posteriormente los electrones son acelerados hacia el ánodo (que contiene al blanco) a altas energías para luego producir rayos X. El mecanismo de refrigeración y la ventana son los mismos que se encuentran en el tubo con filamento.





E6 Rayos gamma Los rayos gamma son un tipo de radiación electromagnética cuya altísima energía que comporta sus fotones viaja y se esparce. Los materiales radiactivos (algunos naturales y otros hechos por el hombre en plantas nucleares) son fuentes de emisión de rayos gamma. Los grandes aceleradores de partículas que los científicos usan para estudiar la composición de la materia pueden, a veces, generar rayos gamma. Pero el mayor productor de rayos gamma con una multiplicidad de posibles maneras para generarlos es el universo. En cierto sentido, las radiaciones gamma son el humo que señala los fuegos cósmicos subyacentes. La mayoría de los rayos gamma caen en el extremo inferior de su gama y son emitidos como elementos de desintegración radiactiva o cuando los electrones interactúan con otra materia. Pero una fracción pertenece al extremo alto del espectro: cuanto más alta la energía, más raro el fotón. La mayor parte de estos fotones parecen ser el producto secundario de colisiones entre rayos cósmicos y otras partículas

A continuación se muestra un ejemplo de producción de rayos gamma.

Primero 60Co se descompone en 60Ni excitado:

<!--[if !vml]--><!--[endif]-->

Entonces el 60Ni cae a su estado fundamental emitiendo dos rayos gamma seguidos uno del otro.

<!--[if !vml]--><!--[endif]-->

Los rayos gamma son de 1,17 MeV y 1,33 MeV respectivamente.

No hay comentarios:

Publicar un comentario