jueves, 21 de abril de 2011

6.15 Cosmología: Origen y evolucion del Universo.

Una de las preguntas más comunes en la actualidad y que siempre se han hecho las personas que trabajan en la cosmología es cómo ha evolucionado el Universo hasta nuestros días y cómo era en un principio.
    A lo largo de la historia, se ha podido ir conociendo poco a poco a través de mucha observación, mucho trabajo, y por supuesto a través de muchas equivocaciones cada vez un poco más acerca de nuestro Universo. Poco a poco hemos ido alejando nuestro conocimiento a épocas más remotas en las que el Universo no se parecía en nada al actual, hemos retrocedido en el tiempo hasta que el Universo no era mas que una “sopa” de partículas elementales como quarks y leptones (ambos tipos de partículas forman la materia de la que todos estamos constituidos), e incluso parece ser que conocemos cómo se dio el comienzo de todo en el Big-Bang (Gran Explosión) hace aproximadamente unos diez mil millones de años. A partir de ahí y a un ritmo vertiginoso al principio y más calmado posteriormente, se sucedieron diversas épocas del Universo, algunas de las cuales se muestran en el esquema siguiente:
    1.- Big-Bang.
    2.- Era de Planck: El Universo tenía 10-43 segundos de vida, una temperatura de 1032 grados Kelvin y un radio que se conoce con el nombre de radio de Planck de 10-33 cm (el radio de los núcleos es de unos 10-13 Compensación). Aquí se encontraban unificadas las cuatro fuerzas fundamentales: gravedad, electro-magnética, débil y fuerte
    3.- Era de la inflación: En esta época, que se dio unos 10-32 segundos después del Big-Bang, el Universo sufre una expansión exponencial y adquiere un tamaño apreciable.  De esta época hablaremos más adelante un poco más.
    4.-Era electrodébil: En ésta época después de una ruptura en la simetría sólo permanecen unidas la fuerza electromagnética y la fuerza débil.
    5.-Ruptura de la unificación electrodébil.
    6.- Era de la bariogénesis: En esta época que ocurre a los 10-5 segundos se crean las partículas (bariones), antes de esta época lo que existían eran quarks y leptones  y no partículas ya que el exceso de temperatura rompería los posibles enlaces entre éstos. Se dio cuando el Universo era unas 1012 más pequeño que el actual y tenía una temperatura de unos 3 1012 K
    7.- Era de la aniquilación: Pasados unos minutos desde el big-bang, se aniquilan los electrones (e-) con los positrones (e+ ), además se forman los núcleos de helio y los neutrinos, que hasta entonces habían interaccionado, con la materia se separan de ella ya que la densidad del Universo ha disminuido mucho. Los hechos que ocurren en esta época son muy importantes, dado que por ejemplo si no se hubiesen formado los núcleos de helio, los neutrones se habrían desintegrado.
    8.- Era de los fotones: Debido a la cantidad de energía electromagnética liberada de la aniquilación e- -e+ , existe mayor cantidad de energía que de materia, esto se da hasta que el Universo tiene unos 100000 años, momento en el que se da un equilibrio entre la materia y la energía.
    9.- Era del plasma: El Universo está dominado por la materia.
   
10.- Era de la recombinación: Se da en el Universo con un millón de años de edad. En esta época se desacoplan los fotones de la materia y se forman las primeras estructuras pregalácticas.
11.- Era de los átomos: Era en la que nos encontramos actualmente diez mil millones de años después del inicio. En nuestro Universo existen dos “Universos independientes “ que cohabitan, el Universo de la materia y el Universo de la radiación.
 
Origen y Evolución del Universo
 Esquema ilustrativo de la evolución del Universo, realizado por D. Eduardo Battaner
  En primer lugar quiero hacer notar que la evolución del Universo que vamos a utilizar es la que se obtiene según el Modelo Cosmológico Estándar que se basa en las ideas que actualmente parecen más acertadas y se acercan más a los datos que se obtienen experimentalmente. También hay que tener en cuenta que para acceder al conocimiento de las primeras épocas del Universo, se tubo que esperar hasta tener conocimientos suficientes en física de partículas y en otras ramas de la física sin las cuales no se puede acceder a las eras anteriores a la era de la aniquilación.
Modelo de la inflación + materia oscura fría
 Éste modelo nació en la década de los 80 ante la necesidad de dar explicación a diversos hechos experimentales así como para intentar ampliar nuestro conocimiento a épocas anteriores del Universo.
 La teoría sostiene que la materia oscura está compuesta por partículas que se mueven lentamente, y mediante el modelo de la inflación consigue explicar las inhomo-geneidades de densidad que pueblan la estructura del Universo. También explica las anisotropías detectadas en la radiación de microondas de fondo.
 La necesidad de la materia oscura (según los últimos datos parece que la materia oscura mantiene el 35% de la densidad del Universo) aparece porque la masa máxima que se puede obtener de la materia ordinaria es como mucho el 5% de la masa total que parece tener el Universo, por lo que se necesita un tipo de materia diferente para explicar la masa que  falta.
 Los últimos datos obtenidos sobre la densidad de materia ordinaria y densidad de materia total a partir de la medida tanto del deuterio (hidrógeno con un núcleo formado por un protón y un neutrón) primigenio que existe en el Universo y que se debió formar totalmente en los primeros instantes del mismo, como de la medida del corrimiento al rojo que se observa al medir la distancia de diversas supernovas de tipo Ia, apoyan lo que predice la teoría.
 El modelo de la inflación por su parte explica cómo el Universo puede ser plano y suave (inhomogeneidades no excesivamente bruscas). Además explica que las inhomogeneidades de la densidad (que darán lugar a la formación de las estructuras) provienen de fluctuaciones cuánticas durante la era de la inflación, momento en el que se produjo una expansión considerable del Universo con lo cual las fluctuaciones que en un principio eran importantes (teniendo en cuenta el tamaño del Universo antes de la expansión) se "estiraron" hasta que se hicieron "despreciables" frente al tamaño del Universo (las fluctuaciones del tamaño aproximado de unos 10-23 cm frente a los Megaparsecs del Universo).
 Los últimos datos que se han tomado sobre la velocidad de retroceso de las galaxias indican que el Universo está acelerando su expansión y no disminuyéndola, como se ha estado diciendo en mucho tiempo. Se realizaron estudios independientes por dos grupos de astrofísicos, midiendo la distancia a más de 50 supernovas de tipo Ia en otras galaxias. Los resultados están de acuerdo con lo que dice la teoría de la inflación + materia oscura fría. Este hecho  nos indica que aproximadamente el 40% de la densidad total del Universo se debe a materia (de todas las clases), mientras que el 60% se debe a energía.
 
Origen y Evolución del Universo
 
Esquema ilustrativo de la Evolución Cósmica. A la izquierda, la velocidad de expansión del Universo es constante. En el centro, se frena, y el Universo es más joven que en el caso anterior, como se pensaba hasta ahora. A la derecha, el Universo se acelera, por lo que es mucho más viejo de lo que se creía.

6.14 Superconductores, Fibra Óptica.

La fibra óptica puede decirse que fue obtenida en 1951, con una atenuación de 1000 dB/Km. (al incrementar la distancia 3 metros la potencia de luz disminuía ½), estas perdidas restringía, las transmisiones ópticas a distancias cortas. En 1970, la compañía de CORNING GLASS de Estados Unidos fabricó un prototipo de fibra óptica de baja perdida, con 20 dB/Km. Luego se consiguieron fibras de 7 dB/Km. (1972), 2.5 dB/Km. (1973), 0.47 dB/Km. (1976), 0.2 dB/Km. (1979). Por tanto a finales de los años 70 y a principios de los 80, el avance tecnológico en la fabricación de cables ópticos y el desarrollo de fuentes de luz y detectores, abrieron la puerta al desarrollo de sistemas de comunicación de fibra óptica de alta calidad, alta capacidad y eficiencia. Este desarrollo se vio apoyado por diodos emisores de luz LEDs, Fotodiodos y LASER (amplificación de luz por emisión estimulada de radiación).


La Fibra Óptica es una varilla delgada y flexible de vidrio u otro material transparente con un índice de refracción alto, constituido de material dieléctrico (material que no tiene conductividad como vidrio o plástico), es capaz de concentrar, guiar y transmitir la luz con muy pocas pérdidas incluso cuando esté curvada. Está formada por dos cilindros concéntricos, el interior llamado núcleo (se construye de elevadísima pureza con el propósito de obtener una mínima atenuación) y el exterior llamado revestimiento que cubre el contorno (se construye con requisitos menos rigurosos), ambos tienen diferente índice de refracción ( n2 del revestimiento es de 0.2 a 0.3 % inferior al del núcleo n1 ).


El diámetro exterior del revestimiento es de 0.1 mm . Aproximadamente y el diámetro del núcleo que transmite la luz es próximo a 10 ó 50 micrómetros. Adicionalmente incluye una cubierta externa adecuada para cada uso llamado recubrimiento.


Ventajas de la tecnología de la fibra óptica


Baja Atenuación


Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto se pueden establecer enlaces directos sin repetidores, de 100 a 200 Km . con el consiguiente aumento de la fiabilidad y economía en los equipamientos.


Gran ancho de banda


La capacidad de transmisión es muy elevada, además pueden propagarse simultáneamente ondas ópticas de varias longitudes de onda que se traduce en un mayor rendimiento de los sistemas. De hecho 2 fibras ópticas serían capaces de transportar, todas las conversaciones telefónicas de un país, con equipos de transmisión capaces de manejar tal cantidad de información (entre 100 MHz/Km a 10 GHz/Km).


Peso y tamaño reducidos


El diámetro de una fibra óptica es similar al de un cabello humano. Un cable de 64 fibras ópticas, tiene un diámetro total de 15 a 20 mm . y un peso medio de 250 Kg/km. Si comparamos estos valores con los de un cable de 900 pares calibre 0.4 (peso 4,000 Kg/Km y diámetro 40 a 50 mm ) se observan ventajas de facilidad y costo de instalación, siendo ventajoso su uso en sistemas de ductos congestionados, cuartos de computadoras o el interior de aviones.


Gran flexibilidad y recursos disponibles


Los cables de fibra óptica se pueden construir totalmente con materiales dieléctricos, la materia prima utilizada en la fabricación es el dióxido de silicio (Si0 2 ) que es uno de los recursos más abundantes en la superficie terrestre.


Aislamiento eléctrico entre terminales


Al no existir componentes metálicos (conductores de electricidad) no se producen inducciones de corriente en el cable, por tanto pueden ser instalados en lugares donde existen peligros de cortes eléctricos.


Ausencia de radiación emitida


Las fibras ópticas transmiten luz y no emiten radiaciones electromagnéticas que puedan interferir con equipos electrónicos, tampoco se ve afectada por radiaciones emitidas por otros medios, por lo tanto constituyen el medio más seguro para transmitir información de muy alta calidad sin degradación.


Costo y mantenimiento


El costo de los cables de fibra óptica y la tecnología asociada con su instalación ha caído drásticamente en los últimos años. Hoy en día, el costo de construcción de una planta de fibra óptica es comparable con una planta de cobre. Además, los costos de mantenimiento de una planta de fibra óptica son muy inferiores a los de una planta de cobre. Sin embargo si el requerimiento de capacidad de información es bajo la fibra óptica puede ser de mayor costo.


Las señales se pueden transmitir a través de zonas eléctricamente ruidosas con muy bajo índice de error y sin interferencias eléctricas.


Las características de transmisión son prácticamente inalterables debido a los cambios de temperatura, siendo innecesarios y/o simplificadas la ecualización y compensación de las variaciones en tales propiedades. Se mantiene estable entre -40 y 200 ºC .


Por tanto dependiendo de los requerimientos de comunicación la fibra óptica puede constituir el mejor sistema.


Desventajas de la fibra óptica


El costo de la fibra sólo se justifica cuando su gran capacidad de ancho de banda y baja atenuación es requerida. Para bajo ancho de banda puede ser una solución mucho más costosa que el conductor de cobre.


La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.


Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.


Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.



6.13 Nuevas tecnologías y nuevos materiales: Laceres.

Láser, dispositivo de amplificación de luz por emisión estimulada de radiación. Los láseres son aparatos que amplifican la luz y producen haces de luz coherente; su frecuencia va desde el infrarrojo hasta los rayos X. Un haz de luz es coherente cuando sus ondas, o fotones, se propagan de forma acompasada, o en fase. Esto hace que la luz láser pueda ser extremadamente intensa, muy direccional, y con una gran pureza de color (frecuencia). Los máseres son dispositivos similares para microondas.
PRINCIPIOS DE FUNCIONAMIENTO

Los láseres obligan a los átomos a almacenar luz y emitirla en forma coherente. Primero, los electrones de los átomos del láser son bombeados hasta un estado excitado por una fuente de energía. Después, se los `estimula' mediante fotones externos para que emitan la energía almacenada en forma de fotones, mediante un proceso conocido como emisión estimulada. Los fotones emitidos tienen una frecuencia que depende de los átomos en cuestión y se desplazan en fase con los fotones que los estimulan. Los fotones emitidos chocan a su vez con otros átomos excitados y liberan nuevos fotones. La luz se amplifica a medida que los fotones se desplazan hacia atrás y hacia adelante entre dos espejos paralelos desencadenando nuevas emisiones estimuladas. Al mismo tiempo, la luz láser, intensa, direccional y monocromática, se `filtra' por uno de los espejos, que es sólo parcialmente reflectante.
La emisión estimulada, el proceso en que se basa el láser, fue descrita por primera vez por Albert Einstein en 1917. En 1958, los físicos estadounidenses Arthur Schawlow y Charles Hard Townes describieron a grandes rasgos los principios de funcionamiento del láser en su solicitud de patente. Obtuvieron la patente, pero posteriormente fue impugnada por el físico e ingeniero estadounidense Gordon Gould. En 1960, el físico estadounidense Theodore Maiman observó el primer proceso láser en un cristal de rubí. Un año más tarde, el físico estadounidense nacido en Irán Alí Javan construyó un láser de helio-neón. En 1966, el físico estadounidense Peter Sorokin construyó un láser de líquido. En 1977, el Tribunal de Patentes de Estados Unidos confirmó una de las reivindicaciones de Gould en relación con los principios de funcionamiento del láser.
TIPOS DE LÁSER
Según el medio que emplean, los láseres suelen denominarse de estado sólido, de gas, de semiconductores o líquidos.

Láseres de estado sólido Los medios más comunes en los láseres de estado sólido son varillas de cristal de rubí o vidrios y cristales con impurezas de neodimio. Los extremos de la varilla se tallan de forma que sus superficies sean paralelas y se recubren con una capa reflectante no metálica. Los láseres de estado sólido proporcionan las emisiones de mayor energía. Normalmente funcionan por pulsos, generando un destello de luz durante un tiempo breve. Se han logrado pulsos de sólo 1,2 × 10-14 segundos, útiles para estudiar fenómenos físicos de duración muy corta. El bombeo se realiza mediante luz de tubos de destello de xenón, lámparas de arco o lámparas de vapor metálico. La gama de frecuencias se ha ampliado desde el infrarrojo (IR) hasta el ultravioleta (UV) al multiplicar la frecuencia original del láser con cristales de dihidrogenofosfato de potasio, y se han obtenido longitudes de onda aún más cortas, correspondientes a rayos X, enfocando el haz de un láser sobre blancos de itrio.
Láseres de gas



<!--[if !vml]--><!--[endif]-->




El medio de un láser de gas puede ser un gas puro, una mezcla de gases o incluso un vapor metálico, y suele estar contenido en un tubo cilíndrico de vidrio o cuarzo. En el exterior de los extremos del tubo se sitúan dos espejos para formar la cavidad del láser. Los láseres de gas son bombeados por luz ultravioleta, haces de electrones, corrientes eléctricas o reacciones químicas. El láser de helio-neón resalta por su elevada estabilidad de frecuencia, pureza de color y mínima dispersión del haz. Los láseres de dióxido de carbono son muy eficientes, y son los láseres de onda continua (CW, siglas en inglés) más potentes.
Láseres de semiconductores Los láseres de semiconductores son los más compactos, y suelen estar formados por una unión entre capas de semiconductores con diferentes propiedades de conducción eléctrica. La cavidad del láser se mantiene confinada en la zona de la unión mediante dos límites reflectantes. El arseniuro de galio es el semiconductor más usado. Los láseres de semiconductores se bombean mediante la aplicación directa de corriente eléctrica a la unión, y pueden funcionar en modo CW con una eficiencia superior al 50%. Se ha diseñado un método que permite un uso de la energía aún más eficiente. Implica el montaje vertical de láseres minúsculos, con una densidad superior al millón por centímetro cuadrado. Entre los usos más comunes de los láseres de semiconductores están los reproductores de discos compactos y las impresoras láser.
Láseres líquidos Los medios más comunes en los láseres líquidos son tintes inorgánicos contenidos en recipientes de vidrio. Se bombean con lámparas de destello intensas —cuando operan por pulsos— o por un láser de gas —cuando funcionan en modo CW. La frecuencia de un láser de colorante sintonizable puede modificarse mediante un prisma situado en la cavidad del láser.
Láseres de electrones libres En 1977 se desarrollaron por primera vez láseres que emplean para producir radiación haces de electrones, no ligados a átomos, que circulan a lo largo de las líneas de un campo magnético; actualmente están adquiriendo importancia como instrumentos de investigación. Su frecuencia es regulable, como ocurre con los láseres de colorante, y en teoría un pequeño número podría cubrir todo el espectro, desde el infrarrojo hasta los rayos X. Con los láseres de electrones libres debería generarse radiación de muy alta potencia que actualmente resulta demasiado costosa de producir.
APLICACIONES DEL LÁSER
Los posibles usos del láser son casi ilimitados. El láser se ha convertido en una herramienta valiosa en la industria, la investigación científica, la tecnología militar o el arte.

Industria
Es posible enfocar sobre un punto pequeño un haz de láser potente, con lo que se logra una enorme densidad de energía. Los haces enfocados pueden calentar, fundir o vaporizar materiales de forma precisa. Por ejemplo, los láseres se usan para taladrar diamantes, modelar máquinas herramientas, recortar componentes micro electrónico, calentar chips semiconductores, cortar patrones de moda, sintetizar nuevos materiales o intentar inducir la fusión nuclear controlada. El potente y breve pulso producido por un láser también hace posibles fotografías de alta velocidad con un tiempo de exposición de algunas billonésimas de segundo. En la construcción de carreteras y edificios se utilizan láseres para alinear las estructuras.

Investigación científica Los láseres se emplean para detectar los movimientos de la corteza terrestre y para efectuar medidas geodésicas. También son los detectores más eficaces de ciertos tipos de contaminación atmosférica. Los láseres se han empleado igualmente para determinar con precisión la distancia entre la Tierra y la Luna y en experimentos de relatividad. Actualmente se desarrollan conmutadores muy rápidos activados por láser para su uso en aceleradores de partículas, y se han diseñado técnicas que emplean haces de láser para atrapar un número reducido de átomos en un vacío con el fin de estudiar sus espectros con una precisión muy elevada. Como la luz del láser es muy direccional y monocromática, resulta fácil detectar cantidades muy pequeñas de luz dispersa o modificaciones en la frecuencia provocadas por materia. Midiendo estos cambios, los científicos han conseguido estudiar las estructuras moleculares. Los láseres han hecho que se pueda determinar la velocidad de la luz con una precisión sin precedentes; también permiten inducir reacciones químicas de forma selectiva y detectar la existencia de trazas de sustancias en una muestra.
Comunicaciones La luz de un láser puede viajar largas distancias por el espacio exterior con una pequeña reducción de la intensidad de la señal. Debido a su alta frecuencia, la luz láser puede transportar, por ejemplo, 1.000 veces más canales de televisión de lo que transportan las microondas. Por ello, los láseres resultan ideales para las comunicaciones espaciales. Se han desarrollado fibras ópticas de baja pérdida que transmiten luz láser para la comunicación terrestre, en sistemas telefónicos y redes de computadoras. También se han empleado técnicas láser para registrar información con una densidad muy alta. Por ejemplo, la luz láser simplifica el registro de un holograma, a partir del cual puede reconstruirse una imagen tridimensional mediante un rayo láser.Medicina
Con haces intensos y estrechos de luz láser es posible cortar y cauterizar ciertos tejidos en una fracción de segundo sin dañar al tejido sano circundante. El láser se ha empleado para `soldar' la retina, perforar el cráneo, reparar lesiones y cauterizar vasos sanguíneos. También se han desarrollado técnicas láser para realizar pruebas de laboratorio en muestras biológicas pequeñas.
Tecnología militar Los sistemas de guiado por láser para misiles, aviones y satélites son muy comunes. La capacidad de los láseres de colorante sintonizables para excitar de forma selectiva un átomo o molécula puede llevar a métodos más eficientes para la separación de isótopos en la fabricación de armas nucleares.
MEDIDAS DE SEGURIDAD
El principal peligro al trabajar con láseres es el daño ocular, ya que el ojo concentra la luz láser igual que cualquier otro tipo de luz. Por eso, el haz del láser no debe incidir sobre los ojos directamente ni por reflexión. Un láser debe ser manejado por personal experto equipado con gafas o anteojos de seguridad.

LÁSER ATÓMICO En enero de 1997, un equipo de físicos estadounidenses anunció la creación del primer láser compuesto de materia en vez de luz. Del mismo modo que en un láser de luz cada fotón viaja en la misma dirección y con la misma longitud de onda que cualquier otro fotón, en un láser atómico cada átomo se comporta de la misma manera que cualquier otro átomo, formando una “onda de materia” coherente.
Los científicos confían en las numerosas e importantes aplicaciones potenciales de los láseres atómicos, aunque presenten algunas desventajas prácticas frente a los láseres de luz debido a que los átomos están sujetos a fuerzas gravitatorias e interaccionan unos con otros de forma distinta a como lo hacen los fotones.

El artículo Cirugía con láser muestra las muchas aplicaciones que el láser presenta en el tratamiento de distintas enfermedades, como la limpieza de la luz de las arterias, la disgregación de cálculos renales o la eliminación de cataratas. El texto que se reproduce a continuación muestra algunas de estas aplicaciones.












RECAPITULACIÓN SEMANA 14

Martes: Final  de las exposiciones por equipo.

Jueves: Trabajo sobre radioisótopos, origen, usos y aplicaciones en México. Medición de la radiación de 3 tipos de materiales: piedra de rió, volcánica y mármol.

Semana 14 jueves: GRAFICAS

Material
Piedra
Mediciones
Cuentas
por
minuto

Promedio
De Rio
21
22
21
20
22
21.2
Volcánica
29
36
30
25
32
30.4
mármol
17
28
25
19
18
21.4







PROMEDIOS


Semana 14 jueves

Discusión previa en equipo, sobre las preguntas para procesar su información, sintetizar y  aplicar el texto indagado.
Exposición al grupo y discusión mediada por el profesor, en relación a las respuestas obtenidas en los diversos equipos. Utilizando el programa de cómputo: procesador de palabras.


Equipo
¿Qué son los Isotopos radiactivos?

¿Cómo se generan los isotopos radiactivos artificiales?

¿Cuáles son los isotopos radiactivos más usados en México?

¿Cuáles son las aplicaciones principales de los isotopos radiactivos?

1
son isótopos inestables de algunos elementos. Se transforman en otros elementos mediante la emisión de partículas o de radiaciones gamma.
Se produce la radiactividad inducida cuando se bombardean ciertos núcleos estables con partículas apropiadas.
Si la energía de estas partículas tiene un valor adecuado penetran dentro del núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente.


Su uso es amplio, alguno de ellos es para saber, por ejemplo en una reacción química, que camino siguen los elementos al romperse una molécula y emigrar a otra.

Otro uso es en medicina, ya que proporcionan la energía para obtener las placas ideográficas o cardiografías. Otro uso es para obtener las radiaciones utilizadas en tratamientos como el cancér.

A nivel industrial se utilizan para obtener energía eléctrica a partir de la descomposición de un isótopo, por ejemplo, se utiliza comúnmente, un isótopo de uranio. Así mismo, se utilizan en barcos, submarinos, aviones, para no utilizar grandes cantidades de combustible de origen petrolífero.

Algunos científicos los han utilizado para saber que zonas del cerebro se usan cuando la gente se dedica a aprender cosas nuevas, mediante un isótopo de carbono (totalmente sin peligro) en el azúcar.

Asimismo para determinar la edad de la materia orgánica, como restos humanos, de ropa, utencilios, etc, mediante la medición del carbono catorce, un isótopo del carbono, el cual a medida que pasa el tiempo empieza a disminuir, convirtiéndose en carbono doce, el carbono normal.
Existen numerosas aplicaciones que utilizan las diferentes propiedades entre los isótopos de un mismo elemento;
Utilización de las propiedades químicas
Utilización de las propiedades nucleares

2
Los radioisótopos son isótopos radiactivos ya que tienen un núcleo atómico inestable (por el balance entre neutrones y protones) y emiten energía y partículas cuando cambia de esta forma a una más estable.
Cada radioisótopo tiene un periodo de desintegración o semivida características. La energía puede ser liberada, principalmente, en forma de rayos alfa (núcleos de helio), beta (electrones o positrones) o gamma (energía electromagnética).
Varios isótopos radiactivos inestables y artificiales tienen usos en medicina

Radiactividad artificial o inducida: Es la que ha sido provocada por transformaciones nucleares artificiales
cuando se bombardean ciertos núcleos estables con partículas apropiadas
La determinación de la razones de isotopos de plomo puede ser una herramienta eficiente para la identificación de las fuentes principales de exposición a plomo y para apoyar la implantación de medidas de salud públicas para prevención y control
Tiempo de vida
Intervalo útil
Aplicaciones de
Isótopo
media ( años )
(años)
datado

Carbono-14
5 730
500 a 50 000
Carbón, materia orgánica
Hidrógeno-3
12.3
1 a 100
Vinos añejados
( o tritio )



Potasio-40
1.3 x 109
10 000 a miles de
Rocas, corteza terrestre


millones de años

Renio-187
4.3 x 1010
40 millones a la edad
Meteoritos


del Universo


3
Se llama radioisótopo a aquel isotopo que es radiactivo. La palabra isótopo, del griego "en mismo sitio", se usa para indicar que todos los tipos de átomos de un mismo elemento se encuentran en el mismo sitio de la tabla periódica. Los átomos que son isótopos entre sí, son los que tienen igual número atómico (número de protones en el núcleo), pero diferente número másico (suma del número de neutrones y el de protones en el núcleo). Los distintos isótopos de un elemento, difieren pues en el número de neutrones. Hay varios tipos de isotopos los cuales aun no tienen un nombre fijo ya que cambian constantemente.

Radiactividad es la propiedad que poseen los núcleos de ciertos elementos de emitir rayos a, b y g.  . Los rayos a y b son partículas portadoras de una carga eléctrica, mientras que los rayos g  son de naturaleza electromagnética. Hasta 1934 solo se conocía la radiactividad natural, pero durante aquel año, los físicos Joliot y Curie produjeron por primera vez una sustancia radiactiva artificial.
Los diferentes isótopos de un elemento tienen las mismas propiedades químicas. El reemplazo de uno por otro en una molécula no modifica, por consiguiente, la función de la misma. Sin embargo, la radiación emitida permite detectarla, localizarla, seguir su movimiento e, incluso, dosificarla a distancia. El trazado isotópico ha permitido estudiar así, sin perturbarlo, el funcionamiento de todo lo que tiene vida, de la célula al organismo entero. En biología, numerosos adelantos realizados en el transcurso de la segunda mitad del siglo XX están vinculados a la utilización de la radioactividad: funcionamiento del genoma (soporte de la herencia), metabolismo de la célula, fotosíntesis, transmisión de mensajes químicos (hormonas, neurotransmisores) en el organismo.
Los isótopos radioactivos se utilizan en la medicina nuclear, principalmente en las imágenes médicas, para estudiar el modo de acción de los medicamentos, entender el funcionamiento del cerebro, detectar una anomalía cardiaca, descubrir las metástasis cancerosas.

Existen numerosas aplicaciones que utilizan las diferentes propiedades entre los isótopos de un mismo elemento;
 Utilización de las propiedades químicas
Utilización de las

4
Los Isótopos radiactivos o radioisótopos son isótopos inestables de algunos elementos. Se transforman en otros elementos mediante la emisión de partículas o de radiaciones gamma.

Es la que ha sido provocada por transformaciones nucleares.
artificiales
Cuando se bombardean ciertos núcleos estables con partículas apropiadas.
Actualmente se usa el cobalto-60 para el tratamiento del cáncer porque emite una radiación con más energía que la que emite el radio .
Ciertos tipos de cáncer se pueden tratar internamente con isótopos radiactivos, como el cáncer de tiroides, como el yodo se va a la glándula tiroides, se trata con yoduro de sodio (NaI) que contenga iones de yoduros radiactivos provenientes del yodo-131 o del yodo-123. Allí la radiación destruye a las células cancerosas sin afectar al resto del cuerpo.
Para el estudio de los desórdenes cerebrales se utiliza una tomografía de emisión de protones conocida como PET. Se le administra al paciente una dosis de glucosa (C6H12O6) que contenga una pequeña cantidad de carbono-11 (11C), que es radiactivo.

Las aplicaciones de los isótopos radiactivos son múltiples y abarcan distintos campos como:
Actividades médicas
En las instalaciones médicas y hospitalarias, el uso de isótopos radiactivos para el diagnóstico y tratamiento de enfermedades ha ido creciendo progresivamente en los últimos cuarenta años.

Es común la utilización de elementos radiactivos no encapsulados, normalmente en estado líquido, como trazadores para el estudio del corazón, hígado, glándula tiroides, etc. En estas actividades se generan materiales de desecho contaminados con los elementos radiactivos empleados como son las jeringuillas, agujas, viales contenedores de líquidos radiactivos, guantes, papel, tejidos y material médico diverso.

En el tratamiento de tumores se emplean fuentes encapsuladas que deben ser sustituidas regularmente debido al decaimiento natural de su actividad

Los ensayos de ciertos fármacos con animales, dan lugar a los residuos biológicos a los que hay que proporcionar también un tratamiento similar a cualquier tipo de residuo radiactivo
Actividades de Investigación:
También se producen residuos radiactivos en aquellas actividades de investigación que emplean fuentes encapsuladas o elementos trazadores con isótopos radiactivos.
En los centros de investigación nuclear (laboratorios, universidades, reactores de enseñanza e investigación) se producen a su vez residuos radiactivos de naturaleza física y química muy variable, que requieren también una gestión segura y eficaz.
Actividades Industriales:
<!--[if !vml]--><!--[endif]-->
Es frecuente y especialmente extendida la utilización de isótopos radiactivos en procesos industriales, generalmente fuentes encapsuladas de baja actividad.
Ejemplos típicos de estas aplicaciones industriales son las medidas de nivel, humedad, densidad o espesor en procesos continuos o de difícil acceso, la utilización de gammagrafías para la realización de ensayos no destructivos, su aplicación en instalaciones de esterilización, etc.

5
Se llama radioisótopos a aquel isótopo que es radiactivo. La palabra isótopo, del griego "en mismo sitio", se usa para indicar que todos los tipos de átomos de un mismo elemento se encuentran en el mismo sitio de la tabla periódica. Los átomos que son isótopos entre sí, son los que tienen igual número atómico (número de protones en el núcleo), pero diferente número másico (suma del número de neutrones y el de protones en el núcleo).
Todos los isótopos naturales situados por encima del bismuto en la tabla periódica son radiactivos. los núcleos de nitrógeno capturaban estas partículas y emitían protones muy rápidamente, con lo que formaban un isótopo estable del oxígeno, el oxígeno 17. Esta reacción puede escribirse en notación simbólica como
ðN + ðHe ð ðO + ðH

Las mediciones de la radiactividad se usan para determinar la edad de los minerales y de restos fósiles (datación). Por ejemplo, la existencia de núclidos radiactivos naturales sobre la superficie de la Tierra sugiere que sus vidas medias son comparables con las edades de los minerales en los cuales se encuentran, y estos proporcionan una estimación de la edad de la Tierra.
La radiación de la radiactividad viene de tres tipos de rayos, que se llaman Rayos
Alfa, Beta y Gamma. Los rayos Alfa se componen de pequeños paquetes en cada
Uno de los cuales hay dos neutrones y dos protones. Los rayos Beta, se componen de
Electrones. Los Gamma, no son partículas, sino ondas de energía, que se liberan
cuando se desintegra un átomo.

6
Se denominan isótopos a los átomos de un mismo elemento, cuyos núcleos tienen cantidad diferente de neutrones, y por tanto, difieren en masa
La energía liberada al cambiar de forma puede detectarse con un contador Geiger o con una película fotográfica. Cada radioisótopo tiene un periodo de desintegración o semivida características. La energía puede ser liberada, principalmente, en forma de rayos alfa (núcleos de helio), beta (electrones o positrones) o gamma (energía electromagnética).

Radio 226, Cobalto 60, Carbono (C12. C13 y C14) , Nitrógeno,(N14, N15) Oxígeno (O16 Y O18), Yodo (-123 e I-131)* Cobalto-60 usado en tele terapia para tratamiento del cáncer.
*Oro-198 se aplica en inyecciones, para zonas cancerosas
*Tantalio-182 se aplica en inyecciones, los médicos los usan para llegar hasta los tumores cancerosos de formas raras, como los que se producen en la vejiga.
*Yodo-131 Usado contra enfermedades de la glándula Tiroides.
*Fósforo-30 Usado contra tratamientos de leucemias crónicas.
*Fósforo-32 Usado en diagnostico de enfermedades relacionadas con los huesos o médula ósea.



FASE DE DESARROLLO
Material: Monitor de radiación nuclear, piedra de rio, volcánica, de mármol,
Se les planteara la Actividad siguiente:

- Realizar las mediciones correspondientes -cuentas/minuto-, con el monitor de radiación nuclear (contador Geiger), de cada una de los tres materiales, piedra volcánica, de rio y mármol. 
-Cada equipo obtendrá cinco datos  y los tabulara.
- Calcularan el promedio de los cinco datos obtenidos
- Tabularan y graficaran los datos promedio, utilizando un programa graficador. (Excel)

Material
Piedra
Mediciones
Cuentas
por
minuto

Promedio
De Rio
21
22
21
20
22
21.2
Volcánica
29
36
30
25
32
30.4
mármol
17
28
25
19
18
21.4


         - Analizaran las gráficas obtenidas  de las relaciones; obtenidas por el grupo
        -  Por equipo, escribirán sus observaciones y elaboraran sus conclusiones
        - Cada equipo presenta el resultado sobre la actividad, utilizando un procesador   de palabras o presentador.